Ni-based films by electrophoretic deposition of Ni(OH)\textsubscript{2} nanoflowers and nanoflakes

OBJECTIVE
Ni(OH)\textsubscript{2} nanoflowers and nanoflowers have been sonochemically synthesized in aqueous medium. Two different surfactants (PVP and PAA) have been used as synthesis aid and dispersant, respectively, in order to stabilize and control the morphology of the particles. The employment of PVP allows the fabrication of flake-like particles that can be shaped directly in the reaction media creating a thin film. Films obtained have been characterized in terms of surface morphology, growth mechanism and crystallography.

EXPERIMENTAL

SYNTHESIS

\[0.1 \text{M Ni(NO}_3\text{)}_2, 3 \text{M H}_2\text{O}, \gamma \text{ Ni(OH)}_2 \text{L}_{\text{P}} \]
Ultrasonic bath (400 W, 200 W, 65 W/cm2)

NANOFLAKES

- Polyvinylpyrrolidone (PVP) \(M_\text{w} = 20,000 \)
- Polyacrylate (PAA) \(M_\text{w} = 2000 \)

One-pot synthesis and shaping

Dried, redispersed and EPD

- EPD -

EPD NANOFLOWERS

"One-pot synthesis" and direct EPD from the reaction media.

EPD CONDITIONS

1. Ni(OH)\textsubscript{2} (g/L) 0.1 – 1.0
2. \(d \) (Hz/cm) 0.5 – 4.4
3. \(E \) (V/cm) 0.2 – 3.0
4. \(t \) (min) 40 – 30

CONCLUSIONS

It is possible to control the morphology of \(\beta\)-Ni(OH)\textsubscript{2} particles through the employment of surfactants as synthesis additives.

Nanoflowers:
- Growth by an Ostwald ripening mechanism
- Random aggregation of particle-like particles during growth
- Mechanism favored by the high energy process of ultrasound

Nanoflowers

- Low adhesion capacity of the nanoflower-like particles to the ITO substrate due to the small contact surface between both.
- Electrophoretic deposition of the thinnest fraction of platelet-like particles coming from the synthesis process or the aggregates breakage during the dispersion process.

ACKNOWLEDGEMENTS

The authors acknowledge the support of the program MAT2009-14448-C02-01 and PTI-201000-2010-002. S. Cabanas Polo also acknowledges the CSIC for the assignment of a Short-Term Grant 2008-0485.